Пoдoбнo Зeмлe и мнoжeству другиx мирoв, Сoлнцe oблaдaeт мaгнитным пoлeм, кoтoрoe прoнизывaeт всe eгo нeдрa и прoстирaeтся дaлeкo зa прeдeлaми eгo пoвeрxнoсти. Этo пoлe скaчeт пo пoвeрxнoсти, инoгдa свoрaчивaясь в пeтли и другиe слoжныe структуры. Плaзмa — иoнизирoвaннoe вeщeствo, кoтoрoe мoжнo нaйти нa сoлнцe — чaстo слeдуeт этим мaгнитным структурaм. Нo инoгдa эти пoчти всeгдa тeснo связaнныe линии пoля сxoдятся и быстрo пeрeсoeдиняются, в рeзультaтe чeгo чaстицы тeкут нaружу с нeвeрoятнoй скoрoстью. Скoрoсть пeрeсoeдинeния всeгдa оставалась загадкой, поскольку не соответствовала уравнениям. Объяснения придумывали годами; ни одно из них не было удовлетворительным. Однако новая теоретическая разработка, наука плазмоидной нестабильности, похоже, разрешила загадку.
Магнитное пересоединение происходит не только на Солнце, но также в других разнообразных астрофизических и земных явлениях. Когда заряженные частицы летят от Солнца к нашему миру и затем стекают в магнитное поле Земли, образуя полярные сияния, это происходит из-за магнитного пересоединения. Когда в межзвездном пространстве находится турбулентная плазма, магнитное пересоединение разогревает электроны; этот же механизм может даже стоять за мощными гамма-всплесками. И здесь, на Земле, мы можем провести лабораторные эксперименты не только чтобы изучить само явления, но и его последствия, например, когда горячая плазма в центре смешивается с более холодной внешней плазмой ближе к стенкам в магнитном термоядерном реакторе.
С точки зрения физики все довольно просто:
- Имеем магнитное поле, созданное любым числом стержневых магнитов.
- Перемещаем эти магниты в разных конфигурациях относительно друг друга.
- Наблюдаем, как линии разъединяются в определенных местах и пересоединяются в других, когда меняются поля.
Вот оно! Магнитное пересоединение. Благодаря серии космических исследований, мы смогли наблюдать и подтвердить явление магнитное пересоединения вполне твердо, как в выбросе солнечных вспышек, так и в полярных сияниях на Земле.
Но дьявол кроется в деталях, как говорится.
Для астрофизиков одной из самых важных деталей плазмы является электрический ток. Поскольку плазма состоит из ионизированных атомов и свободных электронов, включая голые атомные ядра, электрические и магнитные поля могут разделять, двигать и разгонять эти частицы до невероятной скорости. Движущиеся заряженные частицы создают электрические токи, и в одной из таких намагниченных сред эти токи сжимаются в тонкие слои — или листы — которые закручиваются и полностью выходят из плазмы. Крупнейший из таких токов в нашей Солнечной системе рождается Солнцем и известен как гелиосферный токовый слой. Будучи толщиной в 10 000 километров, он простирается за орбиту Плутона во всех направлениях.
Долгое время считалось, что эти тонкие токовые слои необходимы, чтобы сильно ограничить скорость, с которой линии магнитного поля могут расходиться и пересоединяться; так предсказывали теоретические расчеты. Но физика не просто так экспериментальная и точная наука, и наши наблюдения недвусмысленно показали, что разделение и пересоединение происходит быстрее, чем предсказывали уравнения. Группа физиков из Лаборатории физики плазмы Принстона под руководством Луки Комиссо провела серию лабораторных испытаний, которые показали, что решение все это время было у нас перед глазами: лист плазмы — это не постоянная, однородная форма, она может разбиваться на небольшие островки, каждый со своими собственными магнитными свойствами. Вот в чем заключается идея «плазмоидной нестабильности».
Этой идее уже несколько лет, но большой заслугой команды Комиссо является то, что они смогли — впервые — точно определить количественные свойства плазмоидной нестабильности, которые приводят к быстрому магнитному пересоединению в реальных ситуациях. Как ни странно, в ее основе лежит один из старейших физических принципов, восходящих еще к Ферма (а именно к последней теореме Ферма) в 1600-е годы, принципу наименьшего времени. Вот как это выглядит:
Большой лист тока ведет себя как предсказывала старая наивная модель: как непрерывная, единая форма, в которой ограничено магнитное поле. Во многих отношениях он похож на тонкий лист фанеры.
В однородности возникают незначительные девиации и начинают образовываться и расти плазмоидные нестабильности с единой, линейной скоростью. Как будто к фанере применяется небольшая сила и лист изгибается в ответ.
Поскольку внешние магнитные свойства продолжают меняться — Солнце вращается, система Земля — Солнце переходит из ночи в день, сменяется конфигурация поля и т. д. — нестабильности меняются меньше, чем делали это прежде. Как будто вы увеличиваете применяемую силу к фанере, ожидая, что она будет изгибаться сильнее, но вместо этого она просто удерживает напряжение в структуре материала. Это пример хранимой, потенциальной энергии.
Наконец, магнитные свойства меняются настолько, что нестабильности будут гораздо более стабильно сконфигурированы, если силовые линии быстро сместятся и пересоединятся. Именно здесь линии поля разбиваются и пересоединяются быстрее, чем прогнозировала любая другая модель. Это сродни тому, что лист фанеры ломается пополам, выпуская накопленную энергию.
Красота этого исследования имеет два аспекта: в новообретенной предсказательной силе и в удивительных уроках, которые были извлечены. Какие теперь можно делать прогнозы? Сколько длится «фаза два», сколько образуется плазмоидных нестабильностей и в каком темпе и до каких размеров они будут расти. Модель, которая физически воспроизводит эксперименты и наблюдения, это всегда хорошо. Но команда ученых также обнаружила несколько интересных моментов. Есть четыре величины, которые растут или меняются со временем (вроде числа плазмоидов и сколько времени им нужно для достижения критической фазы пересоединения), и три величины, на которые они опираются (вроде размеров изначальных шероховатостей). В отличие от большинства физических законов, которые являются степенными (то есть х пропорционален y в некоторой степени), эти зависимости таковыми не являются. Такого никто не ожидал.
Если вы когда-нибудь задавались вопросом, откуда берутся солнечные вспышки и как они выбрасываются так быстро, ответ заключается в магнитном пересоединении. Мы впервые поняли и теперь можем точно предсказать, как работает это явление не только качественно, но и количественно.
Физики плазмы решили загадку сверхбыстрых солнечных вспышек
Илья Хель